Neuroelectric Tuning of Cortical Oscillations by Apical Dendrites in Loop Circuits
نویسندگان
چکیده
Bundles of relatively long apical dendrites dominate the neurons that make up the thickness of the cerebral cortex. It is proposed that a major function of the apical dendrite is to produce sustained oscillations at a specific frequency that can serve as a common timing unit for the processing of information in circuits connected to that apical dendrite. Many layer 5 and 6 pyramidal neurons are connected to thalamic neurons in loop circuits. A model of the apical dendrites of these pyramidal neurons has been used to simulate the electric activity of the apical dendrite. The results of that simulation demonstrated that subthreshold electric pulses in these apical dendrites can be tuned to specific frequencies and also can be fine-tuned to narrow bandwidths of less than one Hertz (1 Hz). Synchronous pulse outputs from the circuit loops containing apical dendrites can tune subthreshold membrane oscillations of neurons they contact. When the pulse outputs are finely tuned, they function as a local "clock," which enables the contacted neurons to synchronously communicate with each other. Thus, a shared tuning frequency can select neurons for membership in a circuit. Unlike layer 6 apical dendrites, layer 5 apical dendrites can produce burst firing in many of their neurons, which increases the amplitude of signals in the neurons they contact. This difference in amplitude of signals serves as basis of selecting a sub-circuit for specialized processing (e.g., sustained attention) within the typically larger layer 6-based circuit. After examining the sustaining of oscillations in loop circuits and the processing of spikes in network circuits, we propose that cortical functioning can be globally viewed as two systems: a loop system and a network system. The loop system oscillations influence the network system's timing and amplitude of pulse signals, both of which can select circuits that are momentarily dominant in cortical activity.
منابع مشابه
Dendritic Bundles, Minicolumns, Columns, and Cortical Output Units
THE SEARCH FOR THE FUNDAMENTAL BUILDING BLOCK OF THE CEREBRAL CORTEX HAS HIGHLIGHTED THREE STRUCTURES, PERPENDICULAR TO THE CORTICAL SURFACE: (i) columns of neurons with radially invariant response properties, e.g., receptive field position, sensory modality, stimulus orientation or direction, frequency tuning etc., (ii) minicolumns of radially aligned cell bodies and (iii) bundles, constituted...
متن کاملA testable model of global cortical organization.
This report advances a testable model of cortical organization which is tied to gamma band (20-150 Hz) neuroelectric oscillations. The elements of the model function as pattern recognizers and are assumed to be composed of a few cm2 of cortical tissue. Presumed modes of instability in the activity of this network of large units are proposed as the underlying neurophysiological basis of a variet...
متن کاملSpatiotemporal characteristics and pharmacological modulation of multiple gamma oscillations in the CA1 region of the hippocampus
Multiple components of "γ-oscillations" between 30-170 Hz in the CA1 region of the hippocampus have been described, based on their coherence with oscillations in other brain regions and on their cross-frequency coupling with local θ-oscillations. However, it remains unclear whether the different sub-bands are generated by a single broadband oscillator coupled to multiple external inputs, or by ...
متن کاملPyramidal Neurons in Different Cortical Layers Exhibit Distinct Dynamics and Plasticity of Apical Dendritic Spines
The mammalian cerebral cortex is typically organized in six layers containing multiple types of neurons, with pyramidal neurons (PNs) being the most abundant. PNs in different cortical layers have distinct morphology, physiology and functional roles in neural circuits. Therefore, their development and synaptic plasticity may also differ. Using in vivo transcranial two-photon microscopy, we foll...
متن کاملTheory of Electric Resonance in the Neocortical Apical Dendrite
Pyramidal neurons of the neocortex display a wide range of synchronous EEG rhythms, which arise from electric activity along the apical dendrites of neocortical pyramidal neurons. Here we present a theoretical description of oscillation frequency profiles along apical dendrites which exhibit resonance frequencies in the range of 10 to 100 Hz. The apical dendrite is modeled as a leaky coaxial ca...
متن کامل